
An Effective Field Theory 
for Large Scale Structures

Enrico Pajer
Princeton University

based on 1301.7182 with M. Zaldarriaga

Wednesday, February 6, 13



February 5, 2013 Enrico Pajer, Princeton UniversityBerkeley

Outline
Motivations

Standard Perturbation Theory (SPT) and its 
problems

Effective Field Theory for Large Scale Structures 
(EFToLSS)

Resolution of the SPT problems

Renormalization of EFToLSS

Summary and Outlook

Wednesday, February 6, 13



February 5, 2013 Enrico Pajer, Princeton UniversityBerkeley

Motivations

Define Large Scale Structures (LSS)

LSS teach us about: Dark Matter, Dark Energy, 
primordial perturbations, modifications of GR, ...

Why simulate when you can calculate?

Analytical understanding of LSS is a milestone of 
our cosmological model
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Large Scale Structures
The distribution of matter in the universe is 
very inhomogeneous, with very dense clumps 
of matter (e.g. galaxies) separated by big 
voids

On scales much larger than the average 
galaxy-galaxy distance, i.e. O(1) Mpc, the 
density of clumps (e.g. galaxies) is very 
homogeneous

Large Scale Structures (LSS) have a small 
density contrast

�(x) =
⇢(x)
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LSS and Dark Energy
Dark Energy can be probed 
studying the expansion history 
of the universe

The Baryon Acoustic 
Oscillations (BAO) provide a 
standard ruler of 150 Mpc

The BAO peak has a width of 
O(10) Mpc which gets broaden 
by non-linear effects
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LSS and primordial perturbations
Because of the small 
density contrast, LSS evolve 
linearly giving 
us a very clean probe of 
initial conditions

LSS are compatible with 
10-5 perturbations with a 
scale-invariant initial power 
spectrum

Because 3D information is available through redshift, there are 
many more modes in LSS than in the CMB which is 2D, hence 
lower cosmic variance
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Simulations
Numerical simulations of the formation and evolution of 
structures have become a standard tool in interpreting 
new data

Simulations are essential at short scales where the 
dynamics is highly non-linear

Simulating accurately large boxes such as the observable 
universe requires a very large dynamical range, which is 
very time consuming and resource intensive

Probing the large-dimensionality parameter space needed 
for cosmology makes things worse
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Analytical description
Since LSS evolve almost linearly, we have powerful 
analytical tools to describe the physics, e.g. 
perturbation theory

Very general results can be derived where the 
dependence on cosmological parameters is explicit

We can combine analytical result with simulations 
on short scales, which are much less resource 
intensive

Obtain a real understanding of what’s going on
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Mildly non-linear regime
Below some non-linear scale kNL the 
density perturbations are strongly 
coupled and not amenable to analytical 
computations

k<kNL are mildly non-linear, that’s where 
we can make some progress

These scales are crucial for the 
(reconstruction of) the BAO peak

The number of independent modes grow 
with the cube of the shortest scale. So 
pushing closer to kNL is essential to make 
progress on primordial perturbations
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Standard Perturbation Theory
A Boltzmann equation for collisionless Dark Matter 
particles: the Vlasov equation

On large scales (before shell crossing) one can truncate 
the hierarchy and get the fluid equations (Bernardeau et al ’01)

Problem 1: there is no clear expansion parameter

Problem 2: missing deviations from a perfect 
pressureless fluid

Problem 3: predictions are UV-divergent and hence 
unphysical

Wednesday, February 6, 13



February 5, 2013 Enrico Pajer, Princeton UniversityBerkeley

Vlasov Equation
Since there is 6 times more DM than baryons, we focus 
on a system of collisionless DM particles interacting only 
gravitationally

The corresponding Boltzmann equation 

known as the Vlasov Equation, describes the evolution of 
the phase-space density

The Poisson’s equation determines ϕ
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Fluid equations
Let us define density and velocity

Taking the first two moment of the Vlasov eqution 
leads the continuity and the Euler equations

Can we solve it perturbatively?
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Problem 1

Because of shell-crossing the density diverges a short 
scales

No clear expansion parameter for perturbation theory

Even when applying to large scales, this makes it hard 
to estimate the theoretical errors in the computation
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Problem 2
The fluid equations are those of a perfect pressureless 
fluid

Since the short scales cannot be model correctly, there 
is no way to exclude non-linear exchanges of energy 
and/or momentum with the large scales, leading to 
dissipation

More generally, there is NO symmetry forbidding a 
pressure term or any higher derivative corrections, 
e.g. viscosity. 

Why would they not be there?
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Problem 3
Perturbation theory as (dubious) expansion in δ

Corrections to correlators, e.g. to the power spectrum 
P(k), are organized in loops. E.g. linear and 1-loop:

and similarly for v and higher n-point functions

�n ⇠
R
GF (k, k0)�m(k0)�n�m(k � k0)

P =Plin + P22 + P13 + . . .

h��i =h�1�1i+ h�2�2i+ 2h�1�3i+ . . .
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Problem 3
“Loop” corrections indeed have loop integrals

For generic initial conditions these are UV-divergent, 
and hence unphysical

P22(k ! 1) ' k4
Z

dq

q2
P 2
in(q)

P13(k ! 1) ' k2Pin(k)

Z
dqPin(q)

Pin = Akn
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Effective Field Theory of Large Scale 
Structures

Consistently integrate out short-scales (Baumann et al ’10)

Problems 1: smoothed density and velocity are a 
good expansion parameters

Problem 2: effective corrections to a perfect 
pressureless fluid arise (EFT philosophy)

Problem 3: effective corrections are exactly the 
needed counterterms to renormalize the theory
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Smoothing
We smooth all fields on a certain scale Λ<kNL

Short modes can combine to create long-wavelength 
perturbations

We can expand short modes in the background of 
long modes

We get long, stochastic and higher derivative terms

� ! [�]⇤ =
R
dx

0
W⇤(x� x

0)�(x0)

(f g)l = flgl + (fsgs)l +
1
⇤2rflrgl + . . .
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Short scales
We do not know how to describe the short scales, 
but we can parameterize our ignorance

There are numerical and stochastic unknown 
coefficients

These coefficients can be determined by simulations 
or by fitting the observations (Carrasco et al ’12, Hertzberg ’12)

As always in EFT, the theory becomes predictive 
once we have more observables than parameters

(fsgs)l = hfsgsi0 + �l
@hfsgsi
@�l

+ (fsgs)� hfsgsi+ . . .
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Effective  corrections
Smoothing the Vlasov equation leads to

A pressure, viscosity and a stochastic terms, plus 
(infinitely many) higher derivatives

These are all the terms allowed by the symmetries of 
the problem, as in the EFT philosophy
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Problems 1 & 2
Every field is now smoothed on a scale Λ<kNL 

therefore δ, v << 1 providing good expansion 
parameters

The short scales are now consistently accounted for, 
through the effective terms

Collisionless dark matter on large scales shows 
indeed deviations from a perfect pressureless fluid, 
that vanish as k goes to 0

What about perturbation theory?
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Renormalization
For generic initial conditions, SPT predictions are 
UV-divergent and hence unphysical (Friemann & Scoccimarro ’96)

The effective coefficients induced by integrating out 
the short scales (neglected in SPT) are exactly the 
counterterms needed to cancel the UV-divergencies 

EFToLSS, rather than SPT, is the theoretically 
consistent way to do perturbation theory

Einstein deSitter (EdS) is a simple, realistic and very 
instructive example 
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Perturbation theory
For simplicity let us focus just on δ

F is the usual interaction kernel in SPT, while J and cs 
are the new effective terms

The terms on the rhs are treated perturbatively

New corrections to the correlators, e.g. power spectrum

�J =
R
GJ �cs =

R
Gc2sk

2�1

⇤� ' �c2sk
2� � J +

R
F (k, q)�(k � q)�(q)

h�1�csi ⌘ Pcs h�J�Ji ⌘ PJ
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Regularization
The smoothing has regularized the theory. For P = kn

But now we have extra (conter)terms

Precisely the right k-dependence to cancel the UV-
divergences

P22(k ! 1) ' k4
Z

dq

q2
P 2
in(q) ⇠ k4⇤2n�1

P13(k ! 1) ' k2Pin(k)

Z
dqPin(q) ⇠ k2Pin(k)⇤

n�1

PJ = hJJi(⇤) ⇠ k4f(⇤)

Pc2s
= c2s(⇤)k

2Pin(k)
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Cancellation of UV-divergences
Although we show it just at one loop the 
cancellation of divergences takes place at all loops

This is ensured by the EFT construction: if all 
terms compatible with the symmetries are included, 
there is always a term with the same structure as 
the UV-divergences

The cancellation ensures that the result is 
independent of the cutoff Λ, and hence physically 

meaningful (unlike for SPT)
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Einstein de Sitter
During 3300<z<1 our universe was matter dominated

To first approximation most structures formed in a 
universe with Ωm=1, i.e. an Einstein deSitter (EdS) 
universe

The (non-relativistic) SPT fluid equations have a scaling 
symmetry in EdS

because there is no velocity in the problem

This simple but realistic example teach us a lot about 
the structure of perturbation theory

�̃(x, ⌧) = �(�
x

x,�

⌧

⌧)
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Self-similarity
For the rescaled solution to belong to the same 
cosmology as the original one, one needs

This happens only for a self-similar (no-scale) initial 
power spectrum P = A a2 kn

Only one scale in the problem, e.g. the non-linear 
scale

Everything must be function of k/kNL

�2(k, ⌧) ⌘ k3P (k, ⌧)

2⇡2
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Power spectrum
Because of self-similarity, knowing the k-
dependence of every term fixed the form of all 
correlators. 

E.g. the power spectrum is

�2 =

✓
k

kNL

◆3+n

+ �(n)

✓
k

kNL

◆5+n

+ �(n)

✓
k

kNL

◆7

+

✓
k

kNL

◆2(3+n) 
↵(n) + ↵̃(n) ln

✓
k

kNL

◆�
+ . . .

Wednesday, February 6, 13



February 5, 2013 Enrico Pajer, Princeton UniversityBerkeley

Apparent violation of self-similarity

When UV-divergences are present, in cutoff 
regularization terms appear of the form

These violate self-similarity (Frieman & Scoccimarro ‘96)

But also the counterterms violate self-similarity in 
such a way that the final result, after the 
cancellation, is self-similar

Dimensional regularization instead preserves self-
similarity in all steps of the computation

+
⇣

⇤
kNL

⌘## ⇣
k

kNL

⌘#
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Relative importance of 
terms as k->0 
depends on n

For our universe n = 
1.5 hence cs is more 
important than 2-
loops J is less 
important than 3-
loops

Relative importance of corrections

1-loop cs2 J

-3 -2 -1 0 1 2 3 4 n

2

4

6

8

10

d D2

dlnk

This shows which terms can be consistently included
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Dimensional regularization
β andγare n-dependent fitting parameters, that 

can be determined comparing with observations or 
simulations (e.g. Carrasco et al ’12, Hertzberg ’12)

α and α-tilde are n-dependent numbers predicted 

by perturbation theory. They are most easily 
computed in dimensional regularization (dim reg)

Dim reg preserved the scaling symmetry (unlike the 
cutoff regularization) of EdS, hence no violation of 
self-similarity appears anywhere in the computation
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Dim reg computation
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Comparison with simulations

β
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Comparison with simulations
Depending on n there are 0, 1 or 2 fitting 
parameters

EFToLSS provide a better fit to simulations than 
than SPT (not surprisingly)

Once fitting parameters e.g. cs2 or J are fitted, 
their value is fixed for all other predictions, e.g. 
velocity correlators and higher n-point functions

Also there is much more information in each 
individual realization
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Conclusions
SPT is unsatisfactory for at least three reasons

1. there is no clear expansion parameter

2. deviation from perfect pressureless fluid are missing

3. predictions are UV-divergent and hence unphysical

The EFT approach is to consistently integrate out the short scales. 
This addresses all the above problems

1. smoothed fields are small everywhere

2. pressure, dissipation and stochastic noise arise as fitting 
parameters

3. couterterms cancel UV-divergences a make the theory predictive
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Conclusions
EdS is a simple but phenomenologically relevant 
example

We found a very simple results for the 1-loop 
power spectrum using self-similarity

This example teaches us the relative importance of 
loop and effective corrections, which depends on 
the power spectrum

For our universe the effective pressure is more 
important than 2-loop corrections
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Outlook
Generalize to velocity correlators and higher n-
point function. Is the relative importance of 
operators the same?

The effective coefficients coefficients have been 
estimated (Carrasco et al ’12, Hertzberg ’12) fitting the power 
spectrum. But there is more information in each 
individual realization

Lagrangian perturbation theory (LPT) improves SPT 
accounting for bulk flow (Tassev & Zaldarriaga ’12). Develop an 
EFT of LPT

Wednesday, February 6, 13


